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1. INTRODUCTION

Godunov’s method [1] is widely used for the numerical solution of continuum mechanics problems.
An important role in the method is played by the solution of the Riemann problem arising at the interface
of two neighboring cells. These solutions can be approximate or exact (see [2, 3]). Wide experience has
been accumulated to date concerning the numerical solution of problems by applying this method, in par�
ticular, in gas dynamics. 

In [4–6] Godunov’s method is generalized to simulate processes in microscopic targets under
extremal compression and heating. The medium (plasma) is described as a gas with a uniform density
and particle velocity. This model is known as a single�liquid one. It can be one�, two�, or three�tem�
perature; in the last case, the particles of all types have different temperatures. Numerical solutions are
found by applying the splitting method over physical processes. An example is a gasdynamic process
described by the system of differential equations of two� or three�temperature gas dynamics. Solutions
of the equations are found using a difference scheme based on Godunov’s method. To solve the Rie�
mann problem, a generalized two�term equation of state for the medium is constructed. Next, the
solution is found by well�known methods in the same manner as in usual gas dynamics (see [3, 7]).
This approach preserves the conceptual and algorithmic basis for the construction of difference
schemes and makes it possible to use methodological constructions and software tools available in gas
dynamic applications. However, Riemann solvers based on such an equation of state are rather com�
plicated and expensive [5]. 

In this paper, Riemann solvers for two� or three�temperature gas dynamics are designed on the basis of
solving the Riemann problem in one�temperature gas dynamics without constructing an equation of state
for the medium. 

2. FORMULATION OF THE PROBLEM

Consider a medium (plasma) consisting of particles of three types: ions, electrons, and photons, which
are responsible for radiative energy transfer and are denoted by the indices i, e, and f, respectively. The
medium is treated as a gas (or fluid) with a uniform particle density  and a uniform velocity . The tem�

peratures , pressures , and specific internal energies  of the particles are assumed to depend on

space  and time t. Here and below, . 
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Following [4], the system of differential equations of motion at the gasdynamic stage in the case of
plane symmetry in the three�temperature approximation is written as 

(2.1)

Here,  is the substantial derivative; t and x are independent time and space variables, respec�

tively;  is the specific gas density; u is the velocity of the gas;  and  are the pressures and specific inter�
nal energies of the ions, electrons, and photons, respectively; and  is the total pressure.
Quantities without indices are gas parameters. The system of equations (2.1) is closed by the equations of
state  for each component. In view of the equations of state, the energy equations are written
as (see [8])

, (2.2)

where  and  are partial derivatives with respect to ν and p and  is the specific volume of the gas.
Summing Eqs. (2.2) yields the equation 

for the gas pressure, where . The pressure and internal energy of radiation (photons) are
related by the formula 

. (2.3)

From (2.3), we can derive an equation of state for radiation in the ideal gas form

. (2.4)

Therefore, radiation can be treated as a gas with the ratio of specific heats . 
In the two�temperature approximation, when the plasma is a gas with radiation, three energy equations

in (2.1) are replaced by two equations 

where p and ε are the pressure and specific internal energy of the gas, respectively. If the plasma is a gas of
ions and electrons [9], we use the equations

At t = 0, the medium parameters in the Riemann problem are indexed by 1 and 2 for x < 0 and x > 0,
respectively. The components of the media obey their equations of state, which are considered in the form
of two�term equations:

(2.5)

0,

ˆ1 0,

1 0.k
k

d u
dt x

pdu
dt x

d up
dt x

ρ ∂+ ρ =
∂
∂+ =

ρ∂

⎛ ⎞ε ∂+ =⎜ ⎟ρ∂⎝ ⎠

d u
dt t x

∂ ∂
= +
∂ ∂

ρ kp εk

ˆ i e fp p p p= + +

( ),k k kp p= ρ ε

( )

( )
2 21 0, k kk
k k

k p

pdp ua a
dt x

ν
+ ε∂

+ = =
ρ∂ ε

ν
ε ε p /1ν = ρ

2ˆ 1ˆ 0
dp ua
dt x

∂
+ =

ρ∂

2 2 2 2ˆ i e fa a a a= + +

3f fpρε =

( ) /1 , 4 3f f f fp = γ − ρε γ =

/4 3fγ =

1 0,

1 0,f
f

d up
dt x

d up
dt x

⎛ ⎞ε ∂+ =⎜ ⎟ρ∂⎝ ⎠
ε ⎛ ⎞∂+ =⎜ ⎟ρ∂⎝ ⎠

1 0,

1 0.

i
i

e
e

d up
dt x

d up
dt x

⎛ ⎞ε ∂+ =⎜ ⎟ρ∂⎝ ⎠
⎛ ⎞ε ∂+ =⎜ ⎟ρ∂⎝ ⎠

( )
( )( )

0 2
2 00
0, 1 ,

1 1
k k k k

k k k k k k k
k k

p p c
p c p

+ γ
ε = − = γ − ρε + ρ − γ

γ − ρ γ −



www.manaraa.com

COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS  Vol. 55  No. 9  2015

SOLUTION OF THE RIEMANN PROBLEM 1549

where , and  are the medium parameters. According to (2.4), for radiation, we have 
and γf = 4/3. The media are divided by a barrier that instantaneously disappears at the time t = 0. The task
is to determine the flow at t > 0. 

If the equation of state is other than a two�term one, we approximate it by such an equation. The
parameters of the approximating equation are given by the formulas

which were proposed by A.V. Zabrodin. Here, р, ρ, and  are related by the given equation of state.

Since our study relies on [4, 5], we preliminarily present the basic equations from [4, 5] to be used to
solve the Riemann problem. The self�similar configuration arising at t > 0 is the same as in usual gas
dynamics. An analysis of the characteristic equation for system (2.1) shows that its roots

are real. The root  is of multiplicity 3 and corresponds to a particle trajectory. Here, 

, .

For two�term equations of state, . By using the relations on the three�fold character�
istic�trajectory, for each component of the medium, we can introduce its entropy function

.

For smooth solutions, the entropy of each component remains constant ( ) along the trajectory
. Along the other two (sonic) characteristics , we have the relations

respectively. Summing the energy equations in (2.1) over all k and adding the result to the second equation
multiplied by u, for the total energy of the gas, we obtain the equation

,

which is used to compute shock waves (SWs). Following [5], the formulas for SWs are written as

(2.6)

Here, as in Godunov’s scheme, the capital and lowercase letters denote the quantities behind and ahead
of the wavefront, respectively. The index 1 (2) and the uppercase (lowercase) letters correspond to the left
(right) SW. The first four formulas are derived from the Rankine–Hugoniot conditions. Since the varia�
tion in the total energy of the gas (fourth equation) has an additive form, the variation in the energy of each
component is naturally written in the same form (this is the fifth equation). In terms of the uniform density

 behind the SW front, the shock Hugoniot curves for the components with equations of state of form
(2.5) are written as

(2.7)
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If the left wave is a rarefaction wave (RW), then expressions for computing the pressures are derived from
the condition that the entropy functions of the components are preserved along the trajectory:

(2.8)

The exact solution of the Riemann problem for complicated equations of state can be obtained using an
iterative method, for example, one of the methods described in [2, 10]. In what follows, we assume that

. If this condition is not satisfied, then the indices of the original parameters and the velocity signs
are interchanged. After the problem is solved, an inverse operation is performed. 

3. APPROACH TO THE EXACT SOLUTION OF THE RIEMANN PROBLEM
IN TWO� AND THREE�TEMPERATURE MEDIA

The solution algorithm for the Riemann problem in two� and three�temperature gas dynamics is sim�
ilar to that in the case of one�temperature gas dynamics. However, there is a feature in the case of an RW�
involving configuration. Accordingly, we first describe this feature. 

Suppose that a configuration with two RWs arises in the Riemann problem. Then the problem is solved
using the constants on the corresponding characteristics

of the Riemann invariant (see [11])

where the plus (minus) sign corresponds to the index 1 (2). Since the velocity and pressure on the contact
discontinuity (CD) are continuous, in view of (2.8), we obtain a system of two equations with two
unknowns R1 and R2: 

In usual gas dynamics for a gas with a two�term equation of state, the integral can be evaluated analytically
(see [7, 9]), but this cannot be done in two� and three�temperature gas dynamics. Nevertheless, the inte�
gral can be approximately evaluated via integrals in one�temperature gas dynamics if we perform the fol�
lowing transformations. Multiplying and dividing the integrand by  gives

,

Assume that the coefficients  vary weakly along the corresponding Poisson adiabat. If this is not the
case, then the interval of integration with respect to density is partitioned so that the coefficients  vary
weakly on each interval. Then the integral can be represented as a sum of integrals in one�temperature gas
dynamics and can be integrated by quadratures as 

In view of (2.8), the CD velocity is given by the formulas
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with the upper (lower) sign and index 1 (2) used for the left (right) RW. The expressions for the differences
(ck1,2 – C k1,2) are taken from [3, p. 108].

By following this approach to integral evaluation, we write the following system of two equations with
two unknowns  and  for computing the velocities and pressures on the CD (this sys�
tem is the same for all configurations):

where the functions are defined according to the arising configuration. Specifically, the functions are
given by

for a configuration of two SWs, 

for a configuration of two RWs, and

for a configuration of an SW and an RW. Solving the system of equations by Newton’s method, we find
the densities  and . In a SW, the other quantities are calculated using formulas (2.6) and (2.7). In an
RW, the pressures are given by (2.8), while the speed of sound  is found using the formula 

The velocities of the extreme RW characteristics are given by the formulas

The algorithm for determining the configuration occurring in the Riemann problem is similar to that

used in [3, p. 112] with the pressures p and P replaced by the total pressures  and , respectively. Then
the pressure function at reference points is given by the formulas
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The configuration developing in the Riemann problem is determined by analyzing the following condi�
tions:

1. If  then  and . 

2. If , then .

3. If , then .

4. If , then  

The configuration consists of two SWs in case 1, of an SW and an RW in case 2, of two RWs in case 3,
and a vacuum region forms in case 4.

4. APPROACH TO THE APPROXIMATE SOLUTION OF THE RIEMANN PROBLEM
IN TWO� AND THREE�TEMPERATURE MEDIA 

It is well known that approximate solutions of the Riemann problem are used to solve gasdynamic
problems by applying Godunov’s method in regions with weakly varying flow parameters. Naturally, it is
desirable to apply similar approximate solutions in corresponding situations in two� and three�tempera�
ture media. By solving linearized equations (2.1) and (2.2), an approximate “sonic” solution of this kind
can be obtained in the form

Approximate solutions are used as initial data for finding solutions by Newton’s iterative method. In the
RW computations, the initial approximation is calculated using the formulas 

5. NUMERICAL RESULTS FOR TEST PROBLEMS

Below, we present the solutions obtained for three model Riemann problems in three�temperature gas
dynamics for three possible configurations. The coefficients  in RW were calculated from the initial
data. In all the examples, the ion and electron components are ideal gases with γi = 3 and γe = 1.4.

The collision of two flows with initial parameters , , , ,
, and  was calculated in problem I. Problem II was concerned with homogeneous

flows in the plane  with initial parameters , , , , ,
and . In problem III, the initial parameters of fixed gases were specified as , ,

, , , , , , , and
. The resulting solutions are presented in the table.
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Results of solving the model problems

Problem, side
of the CD R U Pi Pe Pf D1 D2

I, 1, 2 1.4681 0 3.2758 0.6030 1.2577 2.9002 – –

II, 1, 2 0.5512 0 0.1423 0.2172 0.2938 1.4272 3.0289 1.4272

III, 1 0.5326 0.7445 0.0680 0.1449 0.0863 0.9899 –1.4514 –0.2454

III, 2 0.1917 0.7445 0.1993 0.0643 0.0356 1.9587 – –

Ĉ

∓ ∓
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6. CONCLUSIONS

Exact (in the case of two�term equations of state) and approximate Riemann solvers in two� and three�
temperature gas dynamics were presented. A feature of the algorithms is that solutions are found without
constructing a general equation of state for the medium. The resulting solutions can be useful in the
numerical solution of problems in two� and three�temperature gas dynamics.
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